Entropy-based feature analysis for speech recognition

نویسندگان

  • Panji Setiawan
  • Harald Höge
  • Tim Fingscheidt
چکیده

Based on the concept of entropy, a new approach to analyse the quality of features as used in speech recognition is proposed. We regard the relation between the hidden Markov model (HMM) states and the corresponding frame based feature vectors as a coding problem, where the states are sent through a noisy recognition channel and received as feature vectors. Using the relation between Shannon’s conditional entropy and the error rate on state level, we estimate how much information is contained in the feature vectors to recognize the states. Thus, the conditional entropy is a measure for the quality of the features. Finally, we show how noise reduces the information contained in the features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

روشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه

Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...

متن کامل

Confusion-based entropy-weighted decoding for robust speech recognition

An entropy-based feature parameter weighting scheme was proposed previously [1], in which the scores obtained from different feature parameters are weighted differently in the decoding process according to an entropy measure. In this paper, we propose a more delicate entropy measure for this purpose considering the inherent confusion among different acoustic classes. If a set of acoustic classe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009